
Algorithms and Distributed
Systems

2019/2020
(Lecture Seven)

MIEI - Integrated Master in Computer Science and
Informatics

Specialization block

João Leitão (jc.leitao@fct.unl.pt)

http://fct.unl.pt

Lecture structure:

• Solution(s) for Homework 3
• Revise Paxos
• Paxos and State Machine Replication
• Multi Paxos

Homework 3:
• Use paxos to build a total order broadcast protocol that

operates in an asynchronous system model under the crash
fault model:
• TO (Total Order): Let m1 and m2 be any two messages. Let pi and pj

be any two correct processes that deliver m1 and m2. If pi delivers
m1 before m2, then pj delivers m1 before m2.

• RB1 (Validity): If a correct process i broadcasts message m, then i
eventually delivers the message.

• RB2 (No Duplications): No message is delivered more than once.
• RB3 (No Creation): If a correct process j delivers a message m, then

m was broadcast to j by some process i.
• RB4 (Aggrement): If a message m is delivered by some correct

process i, them m is eventually delivered by every correct process j.
• You can use up to two primitives (paxos is mandatory):

• Paxos
• - Request: pprepare(v)
• - Indication: pdecided(v)

• Reliable Broadcast
• - Request: broadcast(m)
• - Indication: deliver(m)

Interface of your protocol:
Request: - tobcast(m)
Indication: - todeliver (m)

Homework 3:
• Use paxos to build a total order broadcast protocol that

operates in an asynchronous system model under the crash
fault model:
• TO (Total Order): Let m1 and m2 be any two messages. Let pi and pj

be any two correct processes that deliver m1 and m2. If pi delivers
m1 before m2, then pj delivers m1 before m2.

• RB1 (Validity): If a correct process i broadcasts message m, then i
eventually delivers the message.

• RB2 (No Duplications): No message is delivered more than once.
• RB3 (No Creation): If a correct process j delivers a message m, then

m was broadcast to j by some process i.
• RB4 (Aggrement): If a message m is delivered by some correct

process i, them m is eventually delivered by every correct process j.
• You can use up to two primitives (paxos is mandatory):

• Paxos
• - Request: pprepare(v) ppropose(v)
• - Indication: pdecided(v)

• Reliable Broadcast
• - Request: broadcast(m)
• - Indication: deliver(m)

Interface of your protocol:
Request: - tobcast(m)
Indication: - todeliver (m)

Total Order
Broadcast

(V1)

Algoritmos e Sistemas Distribuídos- TPC2 Solutions 2

Algorithm 1: Total Order Broadcast (Using Paxos and Reliable Broadcast)

Interface:
Requests:

toBCast (m)
Indications:

toDeliver (m)

State:
delivered //set of Ids of messages and respective payload already delivered

pending //Messages to be ordered

paxos //Ordered Instances of Paxos

currentInstance //Current instance of Paxos executing

waiting //Boolean indicating if something is being ordered

Upon Init () do:
delivered � {}
pending � {}
paxos � {}
currentInstance � 0
waiting � false

Upon toBCast(m) do:
mid � generateUniqueID(m)

Trigger broadcast({mid,m}) //trigger local reliable bcast

Upon deliver({mid,m}) do:
If mid 62 delivered ^ {mid,m} 62 pending do:

pending � pending [{mid,m}
Call orderForDelivery()

Upon pdecided({mid,m}) do:
pending � pending \ {mid,m}
delivered � delivered [{mid}
Trigger toDeliver (m)

waiting � false
Call orderForDelivery()

Procedure orderForDelivery():

If ¬ waiting ^ 9e 2 pending do:
currentInstance � currentInstance +1
paxos[currentInstance] � initPaxosInstance()

{mid,m} � pickAtRandom(pending)

Trigger paxos[currentInstance].ppropose({mid,m})

waiting � true

Total Order
Broadcast

(V2)

Algoritmos e Sistemas Distribuídos- TPC2 Solutions 3

Algorithm 2: Total Order Broadcast (Using Paxos)

Interface:
Requests:

toBCast (m)
Indications:

toDeliver (m)

State:
pending //Messages to be ordered

paxos //Ordered Instances of Paxos

currentInstance //Current instance of Paxos executing

waiting //Boolean indicating if something is being ordered

Upon Init () do:
pending � {}
paxos � {}
currentInstance � 0
waiting � false

Upon toBCast(m) do:
mid � generateUniqueID(m)

pending � pending [{mid,m}
Call orderForDelivery()

Upon pdecided({mid,m}) do:
pending � pending \ {mid,m}
Trigger toDeliver (m)

waiting � false
Call orderForDelivery()

Procedure orderForDelivery():

If ¬ waiting ^ 9e 2 pending do:
currentInstance � currentInstance +1
paxos[currentInstance] � initPaxosInstance()

{mid,m} � pickAtRandom(pending)

Trigger paxos[currentInstance].ppropose({mid,m})

waiting � true

Total Order
Broadcast

(V3)

Algoritmos e Sistemas Distribuídos- TPC2 Solutions 4

Algorithm 3: Total Order Broadcast (Using Paxos – Somewhat Simplified Interface)

Interface:
Requests:

toBCast (m)
Indications:

toDeliver (m)

State:
pending //Messages to be ordered

waiting //Boolean indicating if something is being ordered

currentInstance //Current instance of Paxos executing

Upon Init () do:
pending � {}
waiting � false
currentInstance � 0

Upon toBCast(m) do:
mid � generateUniqueID(m)

pending � pending [{mid,m}
Call orderForDelivery()

Upon pdecided({mid,m}) do:
pending � pending \ {mid,m}
Trigger toDeliver (m)

waiting � false
Call orderForDelivery()

Procedure orderForDelivery():

If ¬ waiting ^ 9e 2 pending do:
{mid,m} � pickAtRandom(pending)

currentInstance � currentInstance +1
Trigger ppropose(currentInstance, {mid,m})

waiting � true

Algorithm for proposer

PROPOSE(v)

while(true) do

choose unique sn, higher than any n seen so far

send PREPARE(sn) to all acceptors

if PREPARE_OK(sna, va) from majority then

va = va with highest sna (or choose v otherwise)

send ACCEPT (sn, va) to all acceptors

if ACCEPT_OK(n) from majority then

send DECIDED(va) to client

break

else //timeout on waiting ACCEPT_OK

continue

else //timeout on waiting PREPARE_OK

continue

Algorithm for acceptor
State: np (highest prepare), na, va (highest accept)
/* This state is maintained in stable storage */

PREPARE(n)
if n > np then

np = n // will not accept anything <n
reply <PREPARE_OK,na,va>

ACCEPT(n, v)
if n >= np then

na = n
va = v
reply with <ACCEPT_OK,n>
send <ACCEPT_OK,na,va> to all learners

Algorithm for learner
State: decision, na, va, aset

// receive message ACCEPT_OK from acceptor a
ACCEPTED(n,v) from a

if n > na
na = n
va = v
aset.reset()

else if n < na

return
aset.add(a)
if aset is a (majority) quorum

decision = va

Paxos running

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

Paxos running

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

prepare (2)

prepareOK(2) Will not
accept n’ < 2

Paxos running

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

prepare (2)

prepareOK(2)
prepare (3)

Will not
accept n’ < 2

Will not
accept n’ < 3

prepareOK(3)

Paxos running

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

__ (2,5)

prepare (2)
prepare (3)

Will not
accept n’ < 2

Will not
accept n’ < 3accept(2,5)

prepareOK(2)

prepareOK(3)

acceptOK
Fails to get

his proposal
accepted (or

locked in)

Paxos running
Proposers Acceptors Learners

(1,3) (3,9) (2,5)

__ (2,5)

(3,9) (3,9)

(3,9)

prepare (2)
prepare (3)

prepareOK(2)

prepareOK(3)

accept(2,5)

accept(3,9)
acceptOK(2,5)

Success (9 was
locked-in)

acceptOK (2,5)

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

__ (2,5)

(3,9) (3,9)

(3,9)

prepare (2)
prepare (3)

prepareOK(2)

prepareOK(3)

accept(2,5)

accept(3,9)
acceptOK(2,5) acceptOK (2,5)

acceptOK (3,9)

Paxos running

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

__ (2,5)

(3,9) (3,9)

(3,9)

prepare (2)
prepare (3)

prepareOK(2)

prepareOK(3)

accept(2,5)

accept(3,9)
acceptOK(2,5) acceptOK (2,5)

acceptOK (3,9)

DECIDED (9)

Paxos running

Propagation of inforamtion to
Learners...
1. Whenever an Acceptor accepts a value it sends that

value (and the sequence number) to the Learners
2. Proposers send information to Learners when they

know that there is a value locked-in (i.e., when they
gather a majority quorum of ACCEPT_OK)

3. Learners contact acceptors periodically to know
which values have been accepted (until they obtain a
majority quorum of consistent decisions)

Evidently these different approaches do have trade-offs...

Applying Paxos to State Machine
Replication
• How can we do this?

Applying Paxos to State Machine
Replication
• How can we do this?

• First intuition: We use Paxos to decide a command
to execute, and upon deciding, we execute the
command.
• Then we use Paxos again to decide the following

command to execute, and upon deciding, we
execute the command…
• ... And so on and so forth...

Leveraging Paxos for State
Machine Replication

Proposers Acceptors Learners

(_,_) (_,_) (2,C)

prepare (2)

prepareOK(2)

Leveraging Paxos for State
Machine Replication

Proposers Acceptors Learners

(_,_) (_,_) (2,C)

prepare (2)

prepareOK(2)

2,C (2,C)
accept(2,C)

acceptOK(2,C) acceptOK(2,C)

C C

Leveraging Paxos for State
Machine Replication

Proposers Acceptors Learners

(_,_) (_,_) (2,C)

prepare (2)

prepareOK(2)

2,C (2,C)
accept(2,C)

acceptOK(2,C) acceptOK(2,C)

C C(6,D)

Leveraging Paxos for State
Machine Replication

Proposers Acceptors Learners

(_,_) (_,_) (2,C)

prepare (2)

prepareOK(2)

2,C (2,C)
accept(2,C)

acceptOK(2,C) acceptOK(2,C)

C C(6,D) prepare (6)

prepareOK(6)

Leveraging Paxos for State
Machine Replication

Proposers Acceptors Learners

(_,_) (_,_) (2,C)

prepare (2)

prepareOK(2)

2,C (2,C)
accept(2,C)

acceptOK(2,C) acceptOK(2,C)

C C(6,D) prepare (6)

prepareOK(6)

6,D (6,D)accept(6,D)

Leveraging Paxos for State
Machine Replication

Proposers Acceptors Learners

(_,_) (_,_) (2,C)

prepare (2)

prepareOK(2)

2,C (2,C)
accept(2,C)

acceptOK(2,C) acceptOK(2,C)

C C(6,D) prepare (6)

prepareOK(6)

6,D (6,D)accept(6,D)

D
D

Leveraging Paxos for State
Machine Replication

Proposers Acceptors Learners

(_,_) (_,_) (2,C)

prepare (2)

prepareOK(2)

2,C (2,C)
accept(2,C)

acceptOK(2,C) acceptOK(2,C)

C C(6,D) prepare (6)

prepareOK(6)

6,D (6,D)accept(6,D)

D
D

Leveraging Paxos for State
Machine Replication

Proposers Acceptors Learners

(_,_) (_,_) (2,C)

prepare (2)

prepareOK(2)

2,C (2,C)
accept(2,C)

acceptOK(2,C) acceptOK(2,C)

C C(6,D) prepare (6)

prepareOK(6)

6,D (6,D)accept(6,D)

D
D

C

Leveraging Paxos for State
Machine Replication

Proposers Acceptors Learners

(_,_) (_,_) (2,C)

prepare (2)

prepareOK(2)

2,C (2,C)
accept(2,C)

acceptOK(2,C) acceptOK(2,C)

C C(6,D) prepare (6)

prepareOK(6)

6,D (6,D)accept(6,D)

D
D

C

And now what do we do?

Leveraging Paxos for State
Machine Replication

Proposers Acceptors Learners

(_,_) (_,_) (2,C)

prepare (2)

prepareOK(2)

2,C (2,C)
accept(2,C)

acceptOK(2,C) acceptOK(2,C)

C C(6,D) prepare (6)

prepareOK(6)

6,D (6,D)accept(6,D)

D
D

C

And now what do we do?

Option 1: We execute C at the first replica, but now replicas no
longer executed all operations in the same order (We would
destroy state machine replication)

Leveraging Paxos for State
Machine Replication

Proposers Acceptors Learners

(_,_) (_,_) (2,C)

prepare (2)

prepareOK(2)

2,C (2,C)
accept(2,C)

acceptOK(2,C) acceptOK(2,C)

C C(6,D) prepare (6)

prepareOK(6)

6,D (6,D)accept(6,D)

D
D

C

And now what do we do?

Option 1: We execute C at the first replica, but now replicas no
longer executed all operations in the same order (We would
destroy state machine replication)

Option 2: We do not execute C because it is an old operation,
but now replicas will never converge again (We would destroy
state machine replication).

Leveraging Paxos for State
Machine Replication
• What was the problem is the previous example?

Leveraging Paxos for State
Machine Replication
• What was the problem is the previous example?
• Fundamentally, the problem arises because Paxos

operates with majority quorums. However in state
machine replication all replicas have to execute all
operations in order. This must happen
independently of that replica participating or not in
the quorum that decided a given operation.

• How can we address this issue?

Leveraging Paxos for State
Machine Replication
• Assume that there is an infinite sequence of commands,

that are numbered sequentially, from 0 to infinity.
• Instead of using Paxos to decide the next operation to be

executed, we use an independent instance of Paxos to
(sequentially) decide which operation will be executed for
each of the positions in the sequence of commands.

• Whenever a value (i.e, a command is decided for position n)
we start the Paxos instance to decide the next command
(n+1).

• Replicas have to execute commands in order strictly
following this sequence, which is not necessarily the order
in which they learn decided commands.

Implementing State Machine
Replication with Paxos
• Each replica of the service executes all three roles

of Paxos (Proposer, Acceptor, and Learner).
• Client sends operation op to replica R
• Replica R proposes the received operation in the

next Paxos instance
• If the result of Paxos is the proposed operation,

return ok to the client (and eventually the result)
• Otherwise, propose op in the next Paxos instance…

Implementing State Machine
Replication with Paxos

C1

R1

R2

R3

C2

Implementing State Machine
Replication with Paxos

C1

R1

R2

R3

C2

OP1

OP2

Implementing State Machine
Replication with Paxos

C1

R1

R2

R3

C2

OP1

PREPARE(N,2)

OP2

PREPARE(N,1)

Implementing State Machine
Replication with Paxos

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_)

OP2

PREPARE(N,1)

Implementing State Machine
Replication with Paxos

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1)

OP2

PREPARE(N,1)

Implementing State Machine
Replication with Paxos

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP2

PREPARE(N,1)

Implementing State Machine
Replication with Paxos

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

OP2

PREPARE(N,1)

Implementing State Machine
Replication with Paxos

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

OP2

PREPARE(N+1,1)PREPARE(N,1)

Implementing State Machine
Replication with Paxos

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

OP2

PREPARE(N+1,1)PREPARE(N,1)

OP1 done can also carry the reply, since
the replica can execute OP1 locally
before replying…

Implementing State Machine
Replication with Paxos

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

OP2

PREPARE(N+1,1)PREPARE(N,1)

OP1 done can also carry the reply, since
the replica can execute OP1 locally
before replying…

For Client 1, this is the good case, in which his operation is
decided in the consensus instance following the reception
of his request. Is this good?

Implementing State Machine
Replication with Paxos

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

OP2

PREPARE(N+1,1)PREPARE(N,1)

OP1 done can also carry the reply, since
the replica can execute OP1 locally
before replying…

For Client 1, this is the good case, in which his operation is
decided in the consensus instance following the reception
of his request. Is this good?

Let’s Count Round Trips
of Messages.

Implementing State Machine
Replication with Paxos

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

OP2

PREPARE(N+1,1)PREPARE(N,1)

OP1 done can also carry the reply, since
the replica can execute OP1 locally
before replying…

For Client 1, this is the good case, in which his operation is
decided in the consensus instance following the reception
of his request. Is this good?

Let’s Count Round Trips
of Messages.

1 RTT (Replicas)

1 RTT (Replicas)

Implementing State Machine
Replication with Paxos

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

OP2

PREPARE(N+1,1)PREPARE(N,1)

OP1 done can also carry the reply, since
the replica can execute OP1 locally
before replying…

For Client 1, this is the good case, in which his operation is
decided in the consensus instance following the reception
of his request. Is this good?

Let’s Count Round Trips
of Messages.

1 RTT (Replicas)

1 RTT (Replicas)

1/2 RTT (Client-Replicas)

1/2 RTT (Client-Replicas)

Implementing State Machine
Replication with Paxos

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

OP2

PREPARE(N+1,1)PREPARE(N,1)

OP1 done can also carry the reply, since
the replica can execute OP1 locally
before replying…

For Client 1, this is the good case, in which his operation is
decided in the consensus instance following the reception
of his request. Is this good?

Let’s Count Round Trips
of Messages.

1 RTT (Replicas)

1 RTT (Replicas)

1/2 RTT (Client-Replicas)

1/2 RTT (Client-Replicas)

Even in the best case, Paxos requires two round trips between
replicas to decide a value.

How can we improve this scenario?

Is this the only challenge
associated with using Paxos?

Is this the only challenge
associated with using Paxos?
• No… remember the issue of liveness not being

guaranteed?

Liveness is not guaranteed
(Termination Property)

P1

A1

A2

PREPARE(1) PREPARE_OK(1)

PREPARE(2) PREPARE_OK(2)

PREPARE(3) PREPARE_OK(3)ACCEPT(1)

A3

P2

Liveness is not guaranteed
(Termination Property)

P1

A1

A2

PREPARE(1) PREPARE_OK(1)

PREPARE(2) PREPARE_OK(2)

PREPARE(3) PREPARE_OK(3)ACCEPT(1)

A3

P2
ACCEPT(2)

Liveness is not guaranteed
(Termination Property)

P1

A1

A2

PREPARE(1) PREPARE_OK(1)

PREPARE(2) PREPARE_OK(2)

PREPARE(3) PREPARE_OK(3)ACCEPT(1)

A3

P2
ACCEPT(2) PREPARE(4) PREPARE_OK(4)

ACCEPT(3)

Liveness is not guaranteed
(Termination Property)

P1

A1

A2

PREPARE(1) PREPARE_OK(1)

PREPARE(2) PREPARE_OK(2)

PREPARE(3) PREPARE_OK(3)ACCEPT(1)

A3

P2
ACCEPT(2) PREPARE(4) PREPARE_OK(4)

ACCEPT(3) PREPARE(5)

Liveness is not guaranteed
(Termination Property)

P1

A1

A2

PREPARE(1) PREPARE_OK(1)

PREPARE(2) PREPARE_OK(2)

PREPARE(3) PREPARE_OK(3)ACCEPT(1)

A3

P2

… For ever and ever

ACCEPT(2) PREPARE(4) PREPARE_OK(4)

ACCEPT(3) PREPARE(5)

Liveness is not guaranteed
(Termination Property)

P1

A1

A2

PREPARE(1) PREPARE_OK(1)

PREPARE(2) PREPARE_OK(2)

PREPARE(3) PREPARE_OK(3)ACCEPT(1)

A3

P2

… For ever and ever and ever and ever and ever and ever and ever and ever and ever and
ever and ever and ever …

ACCEPT(2) PREPARE(4) PREPARE_OK(4)

ACCEPT(3) PREPARE(5)

Liveness is not guaranteed
(Termination Property)

P1

A1

A2

PREPARE(1) PREPARE_OK(1)

PREPARE(2) PREPARE_OK(2)

PREPARE(3) PREPARE_OK(3)ACCEPT(1)

A3

P2

… For ever and ever and ever and ever and ever and ever and ever and ever and ever and
ever and ever and ever …

ACCEPT(2) PREPARE(4) PREPARE_OK(4)

ACCEPT(3) PREPARE(5)

Can we completely solve this?

Liveness is not guaranteed
(Termination Property)

P1

A1

A2

PREPARE(1) PREPARE_OK(1)

PREPARE(2) PREPARE_OK(2)

PREPARE(3) PREPARE_OK(3)ACCEPT(1)

A3

P2

… For ever and ever and ever and ever and ever and ever and ever and ever and ever and
ever and ever and ever …

ACCEPT(2) PREPARE(4) PREPARE_OK(4)

ACCEPT(3) PREPARE(5)

Can we completely solve this? Not completely (that would imply
breaking FLP)

Liveness is not guaranteed
(Termination Property)

P1

A1

A2

PREPARE(1) PREPARE_OK(1)

PREPARE(2) PREPARE_OK(2)

PREPARE(3) PREPARE_OK(3)ACCEPT(1)

A3

P2

… For ever and ever and ever and ever and ever and ever and ever and ever and ever and
ever and ever and ever …

ACCEPT(2) PREPARE(4) PREPARE_OK(4)

ACCEPT(3) PREPARE(5)

Can we completely solve this? Not completely (that would imply
breaking FLP)
Is this really a problem?

Liveness is not guaranteed
(Termination Property)

P1

A1

A2

PREPARE(1) PREPARE_OK(1)

PREPARE(2) PREPARE_OK(2)

PREPARE(3) PREPARE_OK(3)ACCEPT(1)

A3

P2

… For ever and ever and ever and ever and ever and ever and ever and ever and ever and
ever and ever and ever …

ACCEPT(2) PREPARE(4) PREPARE_OK(4)

ACCEPT(3) PREPARE(5)

Can we completely solve this? Not completely (that would imply
breaking FLP)
Is this really a problem? Might actually be!

Is there a condition where
progress is easier to achieve?
• What was the problem in the previous execution?

Is there a condition where
progress is easier to achieve?
• What was the problem in the previous execution?

• There were two proposers trying to get their value
decided simultaneously.

• The activity of one of them makes it impossible for the
other to achieve progress and vice versa.

• Liveness is potentially very hard to achieve with
concurrent proposers.

• How could this be addressed?

Is there a condition where
progress is easier to achieve?
• What was the problem in the previous execution?

• There were two proposers trying to get their value
decided simultaneously.

• The activity of one of them makes it impossible for the
other to achieve progress and vice versa.

• Liveness is potentially very hard to achieve with
concurrent proposers.

• How could this be addressed?
• Make sure that there is a single proposer…

Are any other issues that we
should consider?

Are any other issues that we
should consider?
• What if replicas fail?

• What if the relevance of a service increases and you
need to increase the fault tolerance of the service?

Membership issues…

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

OP2

PREPARE(N,1)

Look at the previous execution where OP1
from Client 1 is decided to be executed at
operation slot N of the state machine.

Membership issues…

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

OP2

PREPARE(N,1)

Look at the previous execution where OP1
from Client 1 is decided to be executed at
operation slot N of the state machine.

Membership issues…

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

Look at the previous execution where OP1
from Client 1 is decided to be executed at
operation slot N of the state machine.

Membership issues…

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

Look at the previous execution where OP1
from Client 1 is decided to be executed at
operation slot N of the state machine.

Still fine… we lose a replica but we still make progress (some
client operations might be lost but they can always try again
by issuing their operation to another replica...

Membership issues…

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

Look at the previous execution where OP1
from Client 1 is decided to be executed at
operation slot N of the state machine.

Still fine… we lose a replica but we still make progress (some
client operations might be lost but they can always try again
by issuing their operation to another replica...

What if another replica fails?

Membership issues…

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

Look at the previous execution where OP1
from Client 1 is decided to be executed at
operation slot N of the state machine.

Still fine… we lose a replica but we still make progress (some
client operations might be lost but they can always try again
by issuing their operation to another replica...

What if another replica fails?

Membership issues…

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1)

WAIT FOR EVER BY ACCEPT_OK(N,2,OP1)

Look at the previous execution where OP1
from Client 1 is decided to be executed at
operation slot N of the state machine.

Still fine… we lose a replica but we still make progress (some
client operations might be lost but they can always try again
by issuing their operation to another replica...

What if another replica fails?

Membership issues…

C1

R1

R2

R3

C2

OP1

PREPARE(N,2) PREPARE_OK(N,2,_) ACCEPT (N,2,OP1)

WAIT FOR EVER BY ACCEPT_OK(N,2,OP1)

Look at the previous execution where OP1
from Client 1 is decided to be executed at
operation slot N of the state machine.

Since we operate with Majority Quoruns we must have a
majority of correct processes... In these conditions we cannot
make progress and hence compromise liveness permanently...

What if another replica fails?

Paxos membership issues…

• When failures happen and the replica is not
recoverable, we need to be able to replace it by
another replica…
• Similarly, thinking about a long running system, at

some point we might need to decomission a
machine (because it is outdated...) this should not
be seen as an unplanned failure of a replica.

Paxos membership issues…

• When failures happen and the replica is not
recoverable, we need to be able to replace it by
another replica…
• Similarly, thinking about a long running system, at

some point we might need to decomission a
machine (because it is outdated...) this should not
be seen as an unplanned failure of a replica.

• We need mechanisms to manipulate the
membership of the system (set π)

Problems

• Need mechanism to control replica membership
(i.e., add / remove replicas)
• Paxos does not guarantee liveness in the presence

of concurrent proposals
• Paxos requires two rounds of messages even if a

single proposal exists

Problems

• Need mechanism to control replica membership
(i.e., add / remove replicas)
• Paxos does not guarantee liveness in the presence

of concurrent proposals
• Paxos requires two rounds of messages even if a

single proposal exists

Add/remove replica

C1

R1

R2

R3

R4

OP

Add/remove replica

C1

R1

R2

R3

R4

OP

addReplica(R4)

Add/remove replica

C1

R1

R2

R3

R4

OP

addReplica(R4)

Paxos
instance N
Decision:

addReplica
(R4)

Add/remove replica

C1

R1

R2

R3

R4

OP OP done

addReplica(R4)

Paxos
instance N
Decision:

addReplica
(R4)

Paxos
instance

N+1
Decision:

OP

Add/remove replica

C1

R1

R2

R3

R4

OP OP done

addReplica(R4)

Paxos
instance N
Decision:

addReplica
(R4)

Paxos
instance

N+1
Decision:

OP

Add/remove replica

C1

R1

R2

R3

R4

OP OP done

addReplica(R4)

Paxos
instance N
Decision:

addReplica
(R4)

Paxos
instance

N+1
Decision:

OP

removeReplica(R2)

Paxos
instance

N+2
Decision:
removeRe
plica(R2)

Membership
R1, R2, R3

Add/remove replica

C1

R1

R2

R3

R4

OP OP done

addReplica(R4)

Paxos
instance N
Decision:

addReplica
(R4)

Paxos
instance

N+1
Decision:

OP

removeReplica(R2)

Paxos
instance

N+2
Decision:
removeRe
plica(R2)

Membership
R1, R2, R3, R4

Note: needs to
copy state to R4

Membership
R1, R2, R3

Add/remove replica

C1

R1

R2

R3

R4

OP OP done

addReplica(R4)

Paxos
instance N
Decision:

addReplica
(R4)

Paxos
instance

N+1
Decision:

OP

removeReplica(R2)

Paxos
instance

N+2
Decision:
removeRe
plica(R2)

Membership
R1, R2, R3, R4

Note: needs to
copy state to R4

Membership
R1, R3, R4

Membership
R1, R2, R3

Add/remove replica

C1

R1

R2

R3

R4

OP OP done

addReplica(R4)

Paxos
instance N
Decision:

addReplica
(R4)

Paxos
instance

N+1
Decision:

OP

removeReplica(R2)

Paxos
instance

N+2
Decision:
removeRe
plica(R2)

Problems

• Need mechanism to control replica membership
(i.e., add / remove replicas)
• Paxos does not guarantee liveness in the presence

of concurrent proposals
• Paxos requires two rounds of messages even if a

single proposal exists

Optimizing execution

C1

R1

R2

R3

C2

OP

PREPARE(N,2) PREPARE_OK(N,2) ACCEPT (N,2,OP) ACCEPT_OK(N,2,OP)

OP done

OP2

PREPARE(N+1,1)PREPARE(N,1)

Optimizing execution

C1

R1

R2

R3

C2

OP

PREPARE(N,2) PREPARE_OK(N,2) ACCEPT (N,2,OP) ACCEPT_OK(N,2,OP)

OP done

OP2

PREPARE(N+1,1)PREPARE(N,1)

Phase 1 Phase 2

Optimizing execution

C1

R1

R2

R3

C2

OP

PREPARE(N,2) PREPARE_OK(N,2) ACCEPT (N,2,OP) ACCEPT_OK(N,2,OP)

OP done

OP2

PREPARE(N+1,1)PREPARE(N,1)

Why do we need two phases?

Phase 1 Phase 2

Optimizing execution

C1

R1

R2

R3

C2

OP

PREPARE(N,2)

PREPARE_OK(N,2)

ACCEPT (N,2,OP) ACCEPT_OK(N,2,OP)

OP done

OP2

Do we need two phases if a single
replica makes proposals?

PREPARE(N+1,2)

leader

Phase 1 Phase 2

Optimizing execution

C1

R1

R2

R3

C2

OP

ACCEPT (N,2,OP) ACCEPT_OK(N,2,OP)

OP done

OP2

If there is a single proposer phase 1 is
not required…

leader

Phase 2

Optimizing execution

C1

R1

R2

R3

C2

OP

ACCEPT (N,2,OP) ACCEPT_OK(N,2,OP)

OP done

OP2

If there is a single proposer phase 1 is
not required…

ACCEPT(N+1,2,OP’)

leader

Phase 2

Optimizing execution

C1

R1

R2

R3

C2

OP

ACCEPT (N,2,OP) ACCEPT_OK(N,2,OP)

OP done

OP2

If there is a single proposer phase 1 is
not required…

ACCEPT(N+1,2,OP’)

leader

Phase 2

ACCEPT_OK(N,2,OP’)

OP’ done
Phase 2

Optimizing execution

C1

R1

R2

R3

C2

OP

ACCEPT (N,2,OP) ACCEPT_OK(N,2,OP)

OP done

OP2

The existence of a leader effectively
reduces the cost of a consensus

instance from 2 RTT to 1 RTT

ACCEPT(N+1,2,OP’)

leader

Phase 2

ACCEPT_OK(N,2,OP’)

OP’ done
Phase 2

Paxos with a Leader

• Avoids the necessity of executing the prepare
phase (more efficient in terms of communication
steps).

Paxos with a Leader

• Avoids the necessity of executing the prepare
phase (more efficient in terms of communication
steps).

• However:
• What if the leader fails?
• How do we select a leader?

Paxos with a Leader

• Avoids the necessity of executing the prepare
phase (more efficient in terms of communication
steps).

• However:
• What if the leader fails?
• How do we select a leader?

Multi-Paxos: Optimizing execution

C1

R1

R2

R3

C2

OP1

OP2

Multi-Paxos: Optimizing execution

C1

R1

R2

R3

C2

OP1

OP2

PREPARE(N,2)

Multi-Paxos: Optimizing execution

C1

R1

R2

R3

C2

OP1

OP2

leader
PREPARE(N,2) PREPARE_OK(N,2)

Multi-Paxos: Optimizing execution

C1

R1

R2

R3

C2

OP1

OP2

leader
PREPARE(N,2) PREPARE_OK(N,2)

Leader Election

Multi-Paxos: Optimizing execution

C1

R1

R2

R3

C2

OP1

OP2

leader
PREPARE(N,2) PREPARE_OK(N,2)

Leader Election

Effectively the prepara phase of paxos is selecting a
leader for an instance...

Obviously, if the system is too asynchronous it might
be impossible to select a leader (i.e, complete the

prepare phase)

Multi-Paxos: Optimizing execution

C1

R1

R2

R3

C2

OP1

OP2

leader
PREPARE(N,2) PREPARE_OK(N,2) ACCEPT (N,2,OP1)

Leader Election

Multi-Paxos: Optimizing execution

C1

R1

R2

R3

C2

OP1

OP2

leader
PREPARE(N,2) PREPARE_OK(N,2) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 doneLeader Election

Multi-Paxos: Optimizing execution

C1

R1

R2

R3

C2

OP1

OP2

Leader can send ACCEPT immediately;
it runs as if it’s a prepare had already

been accepted by all replicas

leader
PREPARE(N,2) PREPARE_OK(N,2) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

ACCEPT (N+1,2,OP2)

Leader Election

Multi-Paxos: Optimizing execution

C1

R1

R2

R3

C2

OP1

OP2

Leader can send ACCEPT immediately;
it runs as if it’s a prepare had already

been accepted by all replicas

leader
PREPARE(N,2) PREPARE_OK(N,2) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

ACCEPT (N+1,2,OP2)

ACCEPT_OK(N+1,2,OP2)

Leader Election

Multi-Paxos: Optimizing execution

C1

R1

R2

R3

C2

OP1

OP2

Leader can send ACCEPT immediately;
it runs as if it’s a prepare had already

been accepted by all replicas

leader
PREPARE(N,2) PREPARE_OK(N,2) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

ACCEPT (N+1,2,OP2)

ACCEPT_OK(N+1,2,OP2)

OP2 doneLeader Election

Multi-Paxos: Optimizing execution

C1

R1

R2

R3

C2

OP1

OP2

Leader can send ACCEPT immediately;
it runs as if it’s a prepare had already

been accepted by all replicas

leader
PREPARE(N,2) PREPARE_OK(N,2) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

ACCEPT (N+1,2,OP2)

ACCEPT_OK(N+1,2,OP2)

OP2 doneLeader Election Execution

Multi-Paxos: Optimizing execution

C1

R1

R2

R3

C2

OP1

OP2

Leader can send ACCEPT immediately;
it runs as if it’s a prepare had already

been accepted by all replicas

leader
PREPARE(N,2) PREPARE_OK(N,2) ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

OP1 done

ACCEPT (N+1,2,OP2)

ACCEPT_OK(N+1,2,OP2)

OP2 doneLeader Election Execution Execution

Paxos with a Leader

• Avoids the necessity of executing the prepare
phase (more efficient in terms of communication
steps).

• However:
• What if the leader fails?
• How do we select a leader?

Multi-Paxos: Changing the Leader

C1

R1

R2

R3

C2

OP1

OP2

leader

All replicas “monitor” the Leader in the sense that
they expect the leader to continously make proposals

(i.e., start new paxos instances)

ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

Multi-Paxos: Changing the Leader

C1

R1

R2

R3

C2

OP1

OP2

leader

All replicas “monitor” the Leader in the sense that
they expect the leader to continously make proposals

(i.e., start new paxos instances)
What if there are no client operations?

ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

Multi-Paxos: Changing the Leader

C1

R1

R2

R3

C2

OP1

OP2

leader

All replicas “monitor” the Leader in the sense that
they expect the leader to continously make proposals

(i.e., start new paxos instances)
What if there are no client operations?

The leader can propose a NO-OP operation.

ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

Multi-Paxos: Changing the Leader

C1

R1

R2

R3

C2

OP1

OP2

leader

Imagine that Replica 3, does not see the activities of
the leader (due to asynchrony)

ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

Multi-Paxos: Chaging the Leader

C1

R1

R2

R3

C2

OP1

OP2

leader

Imagine that Replica 3, does not see the activities of
the leader (due to asynchrony)

R3 will suspect that the Leader has failed...

ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

Multi-Paxos: Chaging the Leader

C1

R1

R2

R3

C2

OP1

OP2

leader

Imagine that Replica 3, does not see the activities of
the leader (due to asynchrony)

R3 will suspect that the Leader has failed...
What should R3 do?

ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

Multi-Paxos: Chaging the Leader

C1

R1

R2

R3

C2

OP1

OP2

leader

Imagine that Replica 3, does not see the activities of
the leader (due to asynchrony)

R3 will suspect that the Leader has failed...
What should R3 do?

Try to become the new Leader by executing Prepare

ACCEPT (N,2,OP1) ACCEPT_OK(N,2,OP1)

Multi-Paxos: Chaging the Leader

C1

R1

R2

R3

C2

OP1

OP2

leader

Imagine that Replica 3, does not see the activities of
the leader (due to asynchrony)

R3 will suspect that the Leader has failed...
What should R3 do?

Try to become the new Leader by executing Prepare

PREPARE(N,3)

ACCEPT (N,2,OP)

Multi-Paxos: Chaging the Leader

C1

R1

R2

R3

C2

OP1

OP2

leader

Imagine that Replica 3, does not see the activities of
the leader (due to asynchrony)

R3 will suspect that the Leader has failed...
What should R3 do?

Try to become the new Leader by executing Prepare

PREPARE(N,3)

PREPARE_OK(N,3)

ACCEPT (N,2,OP)

Multi-Paxos: Chaging the Leader

C1

R1

R2

R3

C2

OP1

OP2

leader

Now R3 becomes the leader, and the Accept issued by
R1 is rejected, because there is a prepare with higher

sequence number.

PREPARE(N,3)

PREPARE_OK(N,3)

ACCEPT (N,2,OP)

Multi-Paxos: Chaging the Leader

C1

R1

R2

R3

C2

OP1

OP2

leader

R3 can now propose to remove R1.

PREPARE(N,3)

PREPARE_OK(N,3)

ACCEPT (N,2,OP)

ACCEPT(N,3,removeReplica(R1))

ACCEPT_OK(N,3,_)

Multi-Paxos: Chaging the Leader

C1

R1

R2

R3

C2

OP1

OP2

leader

R1 is no longer part of the system and R3 has taken
over as leader...

PREPARE(N,3)

PREPARE_OK(N,3)

ACCEPT (N,2,OP)

ACCEPT(N,3,removeReplica(R1))

ACCEPT_OK(N,3, removeReplica(R1))

Removing a suspected leader
might not be smart…
• Evidently, the current leader, when receives a

prepare from another replica with a higher
sequence number, can avoid to reply, and execute a
prepare of its own with a higher sequence number
(might not be enough since a majority might
already have accepted the first prepare).

Removing a suspected leader
might not be smart…
• Evidently, the current leader, when receives a

prepare from another replica with a higher
sequence number, can avoid to reply, and execute a
prepare of its own with a higher sequence number
(might not be enough since a majority might
already have accepted the first prepare).
• A new leader might not immediately remove a

previously suspected node, it might delay this to
avoid creating more instability in the system.

Attention to the prepare

• What if a replica becomes leader in some instance
n, and the previous leader had already locked-in
values for instances up to m, where m > n?

Attention to the prepare

• What if a replica becomes leader in some instance
n, and the previous leader had already locked-in
values for instances up to m, where m > n?

• Prepare_OK messages have to reported values
accepted for any instance >= n.
• The new leader will have to re-execute (i.e., issue

accept messages) for all those replicas using the
values that are reported in Prepare_OK messages
(as in the original Paxos).

Summary of Multi-Paxos

• The previous modifications (optimizations) to Paxos
are known as Multi-Paxos.
• The intuition is:

• To have an explicit leader (or a distinguished proposer).
• Imbue the membership management into the state

machine.
• Have a single prepare phase to be used to execute

multiple accept phases in sequence by the leader.

Summary of Multi-Paxos

• Details:
• Since only the leader proposes, client requests either

are all directed at the leader, or should be redirected
from replicas that receive them to the leader.

• The leader can batch multiple operations (in an order
defined by him) in a single Paxos instance.

• The leader can also start multiple Paxos instances
concurrently (i.e., instance n, n+1, n+2, n+3) all with
different values. Replicas (including the leader) can only
execute operations following the strict instance order
however.

Warning about Multi-Paxos in the
Literature

Multi-Paxos is implicitly mentioned as a possible optimization
of Paxos by Leslie Lamport in his 2001 Paper.

Warning about Multi-Paxos in the
Literature

It is experimentally evaluated by Hao Du and David Hilaire in
this (somewhat obscure) technical report from 2009

Warning about Multi-Paxos in the
Literature
• Typically people assume that after a complete execution of

the two phases of Paxos by a new leader, in the following
instances the leader uses a special sequence number
(typically zero) in all other accepts (to denote that he had
become a leader in a previous round).

• I have presented an alternative solution where the leader
keeps using the same sequence number that he used in his
(successful) prepare. This is not common (as far as I know)
but not doing it leads to multiple issues on implementations
and proofs (particularly with parallel instances).

• There is a paper under submission that explains this aspect:
ChainPaxos: When Chain Replication Meets Paxos
Pedro Fouto, Nuno Preguiça, and João Leitão
Under submission to Eurosys 2020.

Homework 4:

• Not this week…

