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Lecture structure:

* Solution(s) for Homework 3

* Revise Paxos

* Paxos and State Machine Replication
* Multi Paxos



Homework 3:

* Use paxos to build a total order broadcast protocol that
operates in an asynchronous system model under the crash
fault model:

* TO (Total Order): Let m; and m, be any two messages. Let p; and p;
be any two correct processes that deliver m,; and m,. If p, delivers
m, before m,, then p, delivers m; before m,.

* RB1 (Validity): If a correct process i broadcasts message m, then i
eventually delivers the message.

 RB2 (No Duplications): No message is delivered more than once.

* RB3 (No Creation): If a correct process j delivers a message m, then
m was broadcast to j by some process i.

 RB4 (Aggrement): If a messa%e m is delivered by some correct
process i, them m is eventually delivered by every correct process j.

* You can use up to two primitives (paxos is mandatory):
* Paxos
* - Request: pprepare(v)
* - Indication: pdecided( v)
o Reliable Broadcast Interface of your protocol:

* - Request: broadcast( m) Request: - tobcast-( m )
e - |ndication: de“ver(m) Ind|Cat|On - tOdehver ( m )
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Algorithm 1: Total Order Broadcast (Using Paxos and Reliable Broadcast)

Total Order
Broadcast

V1

Interface:
Requests:
toBCast (m )
Indications:
toDeliver (m )

State:
delivered //set of Ids of messages and respective payload already delivered
pending //Messages to be ordered
paxos //Ordered Instances of Paxos
currentlnstance //Current instance of Paxos executing
waiting //Boolean indicating if something is being ordered

Upon Init () do:
delivered +— {}
pending «— {}
paxos «— {}
currentInstance <— 0
waiting «— false

Upon toBCast( m ) do:
mid <— generateUniquelD( m )
Trigger broadcast( {mid, m}) //trigger local reliable bcast

Upon deliver( {mid, m} ) do:
If mid ¢ delivered A {mid, m} ¢ pending do:
pending +— pending U {mid, m}
Call orderForDelivery()

Upon pdecided( {mid, m} ) do:
pending <— pending \ {mid, m}
delivered «— delivered U {mid}
Trigger toDeliver (m )
waiting «— false
Call orderForDelivery()

Procedure orderForDelivery():
If — waiting A Je € pending do:
currentInstance <— currentInstance +1
paxos| currentInstance ] <— initPaxosInstance()
{mid, m} <— pickAtRandom(pending)
Trigger paxos| currentInstance ].ppropose( {mid, m} )
waiting «— true



Algorithm 2: Total Order Broadcast (Using Paxos)

Interface:
Requests:
toBCast (m )
Indications:
toDeliver ( m )

State:
pending //Messages to be ordered
paxos //Ordered Instances of Paxos
currentlnstance //Current instance of Paxos executing

Total O rd e r waiting //Boolean indicating if something is being ordered

Upon Init () do:
pending «+— {}

Broadcast povos ¢

currentInstance +— 0

waiting «— false
( V 2 ) Upon toBCast( m ) do:
mid <— generateUniquelD( m )

pending «— pending U {mid, m}
Call orderForDelivery()

Upon pdecided( {mid, m} ) do:
pending «— pending \ {mid, m}
Trigger toDeliver ( m )
waiting «— false
Call orderForDelivery()

Procedure orderForDelivery():
If — waiting A\ Je € pending do:
currentInstance «— currentInstance +1
paxos|[ currentInstance | <— initPaxosInstance()
{mid,m} +— pickAtRandom(pending)
Trigger paxos| currentInstance ].ppropose( {mid, m} )

waiting <— true



Algorithm 3: Total Order Broadcast (Using Paxos — Somewhat Simplified Interface)

| Interface:

Requests:
toBCast (m )

Indications:
toDeliver ( m )

State:
pending //Messages to be ordered
waiting //Boolean indicating if something is being ordered
currentlnstance //Current instance of Paxos executing

Total Order oo it 0 do
Broadcast

pending «+— {}
waiting <— false
currentInstance <— 0

V 3 Upon toBCast( m ) do:
mid <— generateUniquelD( m )

pending <— pending U {mid, m}
Call orderForDelivery()

Upon pdecided( {mid, m} ) do:
pending <— pending \ {mid, m}
Trigger toDeliver (m )
waiting «— false
Call orderForDelivery()

Procedure orderForDelivery():
If — waiting A Je € pending do:
{mid, m} +— pickAtRandom(pending)
currentInstance <— currentInstance +1
Trigger ppropose( currentInstance, {mid, m} )
waiting «— true




Algorithm for proposer

PROPOSE (v)
while (true) do
choose unique sn, higher than any n seen so far
send PREPARE (sn) to all acceptors
if PREPARE OK(sna, va) from majority then
va = va with highest sna (or choose v otherwise)
send ACCEPT (sn, va) to all acceptors
if ACCEPT OK(n) from majority then
send DECIDED (va) to client
break
else //timeout on waiting ACCEPT OK
continue

else //timeout on waiting PREPARE OK

continue



Algorithm for acceptor

State: np (highest prepare), na, va (highest accept)
/* This state is maintained in stable storage */

PREPARE (n)
if n > np then
np = n // will not accept anything <n
reply <PREPARE OK,na,va>

ACCEPT (n, v)
if n >= np then
na = n
va = Vv
reply with <ACCEPT OK,6 n>
send <ACCEPT OK,na,va> to all learners



Algorithm for learner

State: decision, na, va, aset

// receive message ACCEPT OK from acceptor a
ACCEPTED (n,v) from a
if n > na
na = n
va = Vv
aset.reset ()
else if n < na
return
aset.add (a)
if aset is a (majority) quorum

decision = va
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Paxos running
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Propagation of inforamtion to
_earners...

1. Whenever an Acceptor accepts a value it sends that
value (and the sequence number) to the Learners

2. Proposers send information to Learners when they
know that there is a value locked-in (i.e., when they
gather a majority quorum of ACCEPT_OK)

3. Learners contact acceptors periodically to know
which values have been accepted (until they obtain a
majority quorum of consistent decisions)

Evidently these different approaches do have trade-offs...



Applying Paxos to State Machine
Replication

e How can we do this?



Applying Paxos to State Machine
Replication

e How can we do this?

e First intuition: We use Paxos to decide a command
to execute, and upon deciding, we execute the
command.

* Then we use Paxos again to decide the following
command to execute, and upon deciding, we
execute the command...

e ... And so on and so forth...



Leveraging Paxos for State
Machine Replication
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Leveraging Paxos for State

Machine Replication
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Leveraging Paxos for State

Machine Replication
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Levera;

Machine Replication

®

Proposers Acceptors

C) @D

And now what do we do?

Option 1: We execute C at the first replica, but now replicas no
longer executed all operations in the same order (We would
destroy state machine replication)

Option 2: We do not execute C because it is an old operation,
but now replicas will never converge again (We would destroy
state machine replication).
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_everaging Paxos for State
Machine Replication

* What was the problem is the previous example?



_everaging Paxos for State
Machine Replication

* What was the problem is the previous example?

* Fundamentally, the problem arises because Paxos
operates with majority quorums. However in state
machine replication all replicas have to execute all
operations in order. This must happen
independently of that replica participating or not in
the quorum that decided a given operation.

* How can we address this issue?



_everaging Paxos for State
Machine Replication

* Assume that there is an infinite sequence of commands,
that are numbered sequentially, from O to infinity.

* |Instead of using Paxos to decide the next operation to be
executed, we use an independent instance of Paxos to
(sequentially) decide which operation will be executed for
each of the positions in the sequence of commands.

* Whenever a value (i.e, a command is decided for position n)

we start the Paxos instance to decide the next command
(n+1).

* Replicas have to execute commands in order strictly
following this sequence, which is not necessarily the order
in which they learn decided commandes.



mp
Rep

ementing State Machine
ication with Paxos

e Each replica of the service executes all three roles
of Paxos (Proposer, Acceptor, and Learner).

* Client sends operation op to replica R

* Replica R proposes the received operation in the
next Paxos instance

* If the result of Paxos is the proposed operation,
return ok to the client (and eventually the result)

* Otherwise, propose op in the next Paxos instance...
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mplementing State Machine
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OP1

\ PREPARE(N,2)

AN
N/

A

/ PREPARE(N,1)

OP2



C1

R1

R2

R3

C2

mplementing State Machine
Replication with Paxos

R PREPARE(N,2) _OK(N,2,_

AN /N
N [
K




C1

R1

R2

R3

C2

mplementing State Machine
Replication with Paxos




C1

R1

R2

R3

C2

mplementing State Machine
Replication with Paxos

P1
\ P%E( ) OK(N,2,_) ACCEPT (N,2,0P1) ACCEPT_OK(N,2,0P1)
1




C1

R1

R2

R3

C2

mplementing State Machine
Replication with Paxos

P1 OP1 done
\ PREPARE(N,2) OK(N,2,_) ACCEPT (N,2,0P1) ACCEPT_OK(N,Z,OPV
1
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mplementing State Machine
Replication with Paxos

OP1 done can also carry the reply, since

the replica can execute OP1 locally
before replying...

OP1 done
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OP1 done can also carry the reply, since

the replica can execute OP1 locally
before replying...

OP1 done
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For Client 1, this is the good case, in which his operation is
decided in the consensus instance following the reception
of his request. Is this good?
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OP1 done can also carry the reply, since

the replica can execute OP1 locally
before replying...
OP1 done
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For Client 1, this is the good case, in which his operation is
decided in the consensus instance following the reception
of his request. Is this good?
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OP1 done can also carry the reply, since
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For Client 1, this is the good case, in which his operation is
decided in the consensus instance following the reception
of his request. Is this good?



mplementing State Machine
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OP1 done can also carry the reply, since
1/2 RTT (Client-Replicas) the replica can execute OP1 locally
A o before replying...
OP1 OP1 done
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For Client 1, this is the good case, in which his operation is
decided in the consensus instance following the reception
of his request. Is this good?



mplementing State Machine
Replication with Paxos

OP1 done can also carry the reply, since
1/2 RTT (Client-Replicas) the replica can execute OP1 locally
A o before replying...
OP1 OP1 done
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Even in the best case, Paxos requires two round trips between
replicas to decide a value.
How can we improve this scenario?
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s this the only challenge
associated with using Paxos?

* No... remember the issue of liveness not being
guaranteed?
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Can we completely solve this?
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Can we completely solve this? Not completely (that would imply
breaking FLP)



P1

Al

A2

A3

P2

veness is not guaranteed

‘ermination Property)

PREPARE(1) PREPARE_OK(1) ACCEPT(1) PREPARE(3) PREPARE_OK(3) ACCEPT(3) PREPARE(5)

N

N/ Wi N/
W EERRNRY /AN

R RERY A ERARY
)\ )V

PREPARE(2) PREPARE_OK(2) ACCEPT(2) PREPARE(4) PREPARE_OK(4)

... For ever and ever and ever and ever and ever and ever and ever and ever and ever and
ever and ever and ever ...

Can we completely solve this? Not completely (that would imply

breaking FLP)
Is this really a problem?
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... For ever and ever and ever and ever and ever and ever and ever and ever and ever and
ever and ever and ever ...

Can we completely solve this? Not completely (that would imply

breaking FLP)
Is this really a problem? Might actually be!
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* What was the problem in the previous execution?



s there a condition where
progress is easier to achieve?

* What was the problem in the previous execution?

 There were two proposers trying to get their value
decided simultaneously.

* The activity of one of them makes it impossible for the
other to achieve progress and vice versa.

* Liveness is potentially very hard to achieve with
concurrent proposers.

* How could this be addressed?



s there a condition where
progress is easier to achieve?

* What was the problem in the previous execution?

 There were two proposers trying to get their value
decided simultaneously.

* The activity of one of them makes it impossible for the
other to achieve progress and vice versa.

* Liveness is potentially very hard to achieve with
concurrent proposers.

* How could this be addressed?
* Make sure that there is a single proposer...



Are any other issues that we
should consider?




Are any other issues that we
should consider?

* What if replicas fail?

* What if the relevance of a service increases and you
need to increase the fault tolerance of the service?
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Look at the previous execution where OP1
from Client 1 is decided to be executed at
operation slot N of the state machine.
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Membership issues...

OP1 OP1 done
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Look at the previous execution where OP1
from Client 1 is decided to be executed at
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Still fine... we lose a replica but we still make progress (some
client operations might be lost but they can always try again
by issuing their operation to another replica...

OP1 OP1 done

C1
\PREPARE(N,Z) PREPARE_OK(N,2,_) ACCEPT (N,2,0P1) ACCEPT_OK(N,2,0P1)

ERAWAN AN

RN ZERNEWN
o

NC

What if another replica fails?
C2

Look at the previous execution where OP1
from Client 1 is decided to be executed at
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Membership issues...

Still fine... we lose a replica but we still make progress (some

client operations might be lost but they can always try again
by issuing their operation to another replica...
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Look at the previous execution where OP1
from Client 1 is decided to be executed at
operation slot N of the state machine.



Membership issues...

Since we operate with Majority Quoruns we must have a
majority of correct processes... In these conditions we cannot
make progress and hence compromise liveness permanently...
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What if another replica fails?
C2

Look at the previous execution where OP1
from Client 1 is decided to be executed at
operation slot N of the state machine.



Paxos membership issues...

* When failures happen and the replica is not
recoverable, we need to be able to replace it by
another replica...

* Similarly, thinking about a long running system, at
some point we might need to decomission a
machine (because it is outdated...) this should not
be seen as an unplanned failure of a replica.



Paxos membership issues...

* When failures happen and the replica is not
recoverable, we need to be able to replace it by
another replica...

* Similarly, thinking about a long running system, at
some point we might need to decomission a
machine (because it is outdated...) this should not
be seen as an unplanned failure of a replica.

 We need mechanisms to manipulate the
membership of the system (set n)
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Problems

* Need mechanism to control replica membership
(i.e., add / remove replicas)

* Paxos does not guarantee liveness in the presence
of concurrent proposals

* Paxos requires two rounds of messages even if a
single proposal exists
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Why do we need two phases?
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Do we need two phases if a single
replica makes proposals?
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The existence of a leader effectively

reduces the cost of a consensus
instance from 2 RTTto 1 RTT
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Leader Election
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Effectively the prepara phase of paxos is selecting a
leader for an instance...
Obviously, if the system is too asynchronous it might
be impossible to select a leader (i.e, complete the
prepare phase)
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Paxos with a Leader

* Avoids the necessity of executing the prepare
phase (more efficient in terms of communication
steps).

* However:

e What if the leader fails?
e How do we select a leader?
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Multi-Paxos: Changing the Leader

ACCEPT (N,2,0P1) ACCEPT OK(N,2,0P1)

]
X%f

All replicas “monitor” the Leader in the sense that
they expect the leader to continously make proposals
(i.e., start new paxos instances)

What if there are no client operations?

The leader can propose a NO-OP operation.
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Imagine that Replica 3, does not see the activities of
the leader (due to asynchrony)
R3 will suspect that the Leader has failed...
What should R3 do?
Try to become the new Leader by executing Prepare
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Imagine that Replica 3, does not see the activities of
the leader (due to asynchrony)
R3 will suspect that the Leader has failed...
What should R3 do?
Try to become the new Leader by executing Prepare
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Now R3 becomes the leader, and the Accept issued by
R1 is rejected, because there is a prepare with higher
sequence number.
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R3 can now propose to remove R1.
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R1 is no longer part of the system and R3 has taken
over as leader...




Removing a suspected leader
might not be smart...

* Evidently, the current leader, when receives a
prepare from another replica with a higher
sequence number, can avoid to reply, and execute a
prepare of its own with a higher sequence number
(might not be enough since a majority might
already have accepted the first prepare).




Removing a suspected leader
might not be smart...

* Evidently, the current leader, when receives a
prepare from another replica with a higher
sequence number, can avoid to reply, and execute a
prepare of its own with a higher sequence number
(might not be enough since a majority might
already have accepted the first prepare).

* A new leader might not immediately remove a
previously suspected node, it might delay this to
avoid creating more instability in the system.
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values for instances up to m, where m > n?



Attention to the prepare

* What if a replica becomes leader in some instance
n, and the previous leader had already locked-in
values for instances up to m, where m > n?

* Prepare_OK messages have to reported values
accepted for any instance >=n.

* The new leader will have to re-execute (i.e., issue
accept messages) for all those replicas using the
values that are reported in Prepare  OK messages
(as in the original Paxos).



Summary of Multi-Paxos

* The previous modifications (optimizations) to Paxos
are known as Multi-Paxos.

* The intuition is:
* To have an explicit leader (or a distinguished proposer).

* Imbue the membership management into the state
machine.

* Have a single prepare phase to be used to execute
multiple accept phases in sequence by the leader.



Summary of Multi-Paxos

e Details:

* Since only the leader proposes, client requests either
are all directed at the leader, or should be redirected
from replicas that receive them to the leader.

* The leader can batch multiple operations (in an order
defined by him) in a single Paxos instance.

 The leader can also start multiple Paxos instances
concurrently (i.e., instance n, n+1, n+2, n+3) all with
different values. Replicas (including the leader) can only
execute operations following the strict instance order
however.



Warning about Multi-Paxos in the
Literature

Paxos Made Simple

Leslie Lamport = Download BibTex
ACM SIGACT News (Distributed Computing Column) 32, 4 (Whole Number 121, December 2001) | December 2001, pp. 51-58

At the PODC 2001 conference, | got tired of everyone saying how difficult it was to understand the Paxos
algorithm, published in [122]. Although people got so hung up in the pseudo-Greek names that they found

the paper hard to understand, the algorithm itself is very simple. So, | cornered a couple of people at the
conference and explained the algorithm to them orally, with no paper. When | got home, | wrote down the
explanation as a short note, which | later revised based on comments from Fred Schneider and Butler Algorithms
Lampson. The current version is 13 pages long, and contains no formula more complicated than n1 > n2.

Research Areas

Copyright © 2001 by the Association for Computing Machinery, Inc.Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc,, fax +1 (212) 869-0481, or permissions@acm.org. The
definitive version of this paper can be found at ACM's Digital Library --http://www.acm.org/dl/.

Multi-Paxos is implicitly mentioned as a possible optimization
of Paxos by Leslie Lamport in his 2001 Paper.




Warning about Multi-Paxos in the

Literature

Multi-Paxos: An Implementation and Evaluation

Hao Du*

Abstract

We implemented a fully functional sequential Multi-
Paxos system and a prototype parallel Multi-Paxos sys-
tem. The throughput of the system under various settings
of the Paxos cluster size, network latency, and window
size (of the parallel Paxos) were evaluated, giving us in-
sight into how and when these factors affect the perfor-
mance. Additonally, despite existing methods for elect-
ing distinguished proposer, we proposed and evaluated a
different simple yet effective approach to determine the
distinguished proposer.

David J. St. Hilaire*

respond with a rejection or with a Promise. A Promise
tells the Proposer that the Acceptor will not accept a Pro-
posal with a lower proposal number. A Promise also con-
tains the last proposal value that the Acceptor accepted.
If the proposer receives a Promise from a majority of the
Acceptors, it can move to the Propose phase. In this
phase, the Proposer sends a Proposal message contain-
ing the Paxos iteration number, the proposal number, and
the proposal value (this is either the value returned in the
Prepare phase or a value of the Proposer’s choosing if
no value was obtained in the Prepare phase) to the Ac-

rentnre ITf the Arrentare have nat nenmicad tn nanlv ar.

It is experimentally evaluated by Hao Du and David Hilaire in
this (somewhat obscure) technical report from 2009




Warning about Multi-Paxos in the
Literature

e Typically people assume that after a complete execution of
the two phases of Paxos by a new leader, in the following
instances the leader uses a special sequence number

(typically zero) in all other accepts (to denote that he had
become a leader in a previous round).

* | have presented an alternative solution where the leader
keeps using the same sequence number that he used in his
(successfuﬁ prepare. This is not common (as far as | know)

but not doing it leads to multiple issues on implementations
and proofs (particularly with parallel instances).

* There is a paper under submission that explains this aspect:
ChainPaxos: When Chain Replication Meets Paxos
Pedro Fouto, Nuno Preguiga, and JoéGo Leitéo
Under submission to Eurosys 2020.



Homework 4:

* Not this week...



